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Lecture 12: Bayesian optimization: Gaussian process regression

David Sweet



Review

Surrogate function in Bayesian optimization

* A surrogate function models the response surface, BM(parameters)
 BO uses Gaussian process regression (GPR) to create the model
 BO optimizes over surrogate:

* Finds parameter value that maximizes the GPR estimate of BM



Gaussian process regression

Overview

* Estimates both function value (BM) and model uncertainty

e uncertainty in its own estimate of BM

 NOT uncertainty in your measurement, that’s S.E.
 Forms estimates at parameter values where you haven’t taken measurements
 Forms estimates directly from measurements; no fitting

 So we call GPR nonparametric



GPR function estimates

Baseline

- BM aggregate measurements so far: y;
» Call parameter values x;, so y.(x;) is BM measured at parameter x;

» Goal: Estimate y for any x, call it y(x)

o Start somewhere: Estimate everywhere by the average

yx) =y = (Y1(X1) + ¥,(x%p) + )’S(XS))B

* Not very precise, but unbiased. Good place to start for any model.



GPR function estimates

Standardize

 Subtract out mean and focus on deviations from it

Yi 7 Yi—)
 While we’re at it, divide by stddev:

 Transformed y; have no units ($, clicks, minutes, etc.) and
new y:. has mean O and stddev 1.



GPR function estimates

Standardize

« Now y(x) = O for all x.

* N.B.: Recover original units by:

6,9(x) + ¥



GPR function estimates
Weighted average

e Model variation with x

 From average (which is now just 0)

n 2.y;
y(x) = —
n
* to weighted average
WY
() =



GPR function estimates
Weighted average

» Key: weights depend on distance from x to x;

e X - parameter at which we’re forming an estimate

* X; - parameter where we’ve already measured

e SO

* N.B.:y; are fixed numbers, the measurements of BM



GPR function estimates

Weighted average: functional form of w

e Criteria:

» w(x, X;) should be larger when x nearer to x; b/c we assume the response
surface, y(x), varies reasonably smoothly

» w(x, x;) should approach 0 when farther away from x;
» (when far from all x;, y(x) will approach zero, the baseline value)

« W(x,x;) called a kernel function



GPR function estimates

Weighted average: functional form of w

2 2
. We’ll use squared exponential: w(x, x;) = e~ ¥ 7257

* nice and smooth, so we get smooth interpolations between measurements

* auniversal kernel, i.e., can be used in GPR to model any smooth function

* N.B.: not calling it “gaussian kernel” in this context b/c confusing (i.e., it’s
not this kernel that puts the “G” in GPR)

* 5 IS a hyperparameter; determines scale of smoothness

e tune s by LOOCYV or other out-of-sample method



GPR function estimates

Weighted average: functional form of w

Px) = Zwlx, x)yi(xy) o Te 972y ()
. or, with K = [w(x, x;), w(x,x,), ...]1  and y = [y}, ¥, ...]"
y(x) o Ky

* a compact, matrix-vector form



GPR function estimates

“Clustering” Double weight

b/c two measurements
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GPR function estimates

“Clustering”

* Soln: reduce weight based on nearness to other measurements

 Use squared exponential still, but in denominator
0 —(xq —x1)2/ (2s5°) 0 —(xq —x2)2/ (2s57) 0 —(xq —x3)2/ (2s5°)

Ky = | p=o=x)(25%)  ,=(=x)%(25%)  ,—(0—x3)°/(257)

- Each element is (K,,); ; = w(x;, x;) <==both x’s are measurements



GPR function estimates

Estimate y

y(x) _KT xxy

» Estimate (y) is a
weighted average of the
measurements (y)
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GPR uncertainty

Two types of uncertainty

 GPR reports uncertainty in its estimate, model uncertainty

* Contrast with SE of an aggregate measurement, measurement uncertainty

e Criteria:

 Uncertainty is zero (minimum) at x;, where you have a measured value

* Uncertainty is one (maximum) far from any measurements



GPR uncertainty

Uncertainty criteria
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GPR uncertainty

Model uncertainty

* Think “certainty” for a moment, “certainty = 1-uncertainty”:

» 1 at measurement, x;

e O far from measurements

« What has this form? Squared exponential, K,

* |nterpolate between certainties the same as we interpolated between
measurements: K/ K-'K_

. Switch back to uncertainty: 1 — K/ K 'K,



Full GPR

. $(x) = KI'K 1y

A2
0, =

XX

1 -K'K 'K,

e N.B.: Matrix inversion
is O(nN"3), which is slow

the GPR

This was an intuitive “reading” of

' equations. For a more

precise presentation, see
Appendix C.
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What puts the G in GPR?

And how is it a “process”?

» Model each value y(x) as a gaussian distribution

» Model any collection of {y(x)} as a multivariate gaussian distribution

e X IS continuous, so really an infinite-dimension gaussian distribution

» First considered as y(7), where ¢ is time. A process is something that changes
over time. A gaussian process Is one where y has a gaussian distribution that
changes over time. Ex: a Brownian motion (continuous random walk)

 Change r to x and you have a machine learning tool, GP regression



Summary

Gaussian process regression (GPR)

 GPR is nonparametric, forms estimates directly from measurements
 GPR reports estimates of BM and of model uncertainty in BM

* Used as surrogate function in Bayesian optimization
 Computation is kind of slow, 0(n3)

A T —1

y(x) = K K.y

6 =1-KIK;'K,



