Experimental optimization Lecture 12: Bayesian optimization: Gaussian process regression

David Sweet

Review Surrogate function in Bayesian optimization

- A surrogate function models the response surface, BM(parameters)
- BO uses Gaussian process regression (GPR) to create the model
- BO optimizes over surrogate: lacksquare
 - Finds parameter value that maximizes the GPR estimate of BM

Gaussian process regression Overview

- Estimates both function value (BM) and model uncertainty
 - uncertainty in its own estimate of BM
 - NOT uncertainty in your measurement, that's S.E.
- Forms estimates at parameter values where you haven't taken measurements
- Forms estimates directly from measurements; no fitting
 - So we call GPR nonparametric

GPR function estimates Baseline

- BM aggregate measurements so far: y_i
- Call parameter values x_i , so $y_i(x_i)$ is BM measured at parameter x_i
- Goal: Estimate y for any x, call it $\hat{y}(x)$
- Start somewhere: Estimate everywhere by the average

$$\hat{y}(x) = \bar{y} = \left(y_1(x)\right)$$

Not very precise, but unbiased. Good place to start for any model.

 $(x_1) + y_2(x_2) + y_3(x_3))/3$

GPR function estimates Standardize

Subtract out mean and focus on deviations from it

 y_i

- While we're at it, divide by stddev:
 - y_i
- Transformed y_i have no units (\$, clicks, minutes, etc.) and new y_i has mean 0 and stddev 1.

$$\rightarrow \frac{y_i - \bar{y}}{\gamma_i - \bar{y}}$$

$$\rightarrow \frac{y_i - \bar{y}}{\sigma_y}$$

GPR function estimates Standardize

- Now $\hat{y}(x) = 0$ for all x.
- N.B.: Recover original units by:

 $\sigma_y \hat{y}(x) + \bar{y}$

GPR function estimates Weighted average

- Model variation with x
- From average (which is now just 0)

• to weighted average

 $\hat{y}(x)$

 $\Sigma w_i y_i$ ΣW_i

GPR function estimates Weighted average

- Key: weights depend on distance from x to x_i
 - x parameter at which we're forming an estimate
 - x_i parameter where we've already measured
- So:

$$\hat{y}(x) =$$

• N.B.: y_i are fixed numbers, the measurements of BM

$$\frac{\sum w(x, x_i)y_i}{\sum w(x, x_i)}$$

GPR function estimates Weighted average: functional form of w

- Criteria:
 - $w(x, x_i)$ should be larger when x nearer to x_i b/c we assume the response surface, y(x), varies reasonably smoothly
 - $w(x, x_i)$ should approach 0 when farther away from x_i
 - (when far from all x_i , $\hat{y}(x)$ will approach zero, the baseline value)
- $w(x, x_i)$ called a kernel function

GPR function estimates Weighted average: functional form of w

- We'll use squared exponential: w(x)

 - a *universal kernel*, i.e., can be used in GPR to model any smooth function
 - N.B.: not calling it "gaussian kernel" in this context b/c confusing (i.e., it's not this kernel that puts the "G" in GPR)
- s is a hyperparameter; determines scale of smoothness
- tune s by LOOCV or other out-of-sample method

$$(x_i) = e^{-(x-x_i)^2/(2s^2)}$$

• nice and smooth, so we get smooth interpolations between measurements

GPR function estimates Weighted average: functional form of w

- or, with $K = [w(x, x_1), w(x, x_2), ...]^T$ and $y = [y_1, y_2, ...]^T$

 $\hat{y}(x) = \sum w(x, x_i) y_i(x_i) \propto \sum e^{-(x-x_i)^2/(2s^2)} y_i(x_i)$ $\hat{y}(x) \propto K^T y$

• a compact, matrix-vector form

GPR function estimates "Clustering"

 $\begin{array}{c}
1.0 \\
0.8 \\
0.6 \\
0.4 \\
0.2 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.2 \\
0.4 \\
0.2 \\
0.0 \\
0.2 \\
0.4 \\
0.6 \\
0.8 \\
1.0 \\
\end{array}$

Х

GPR function estimates "Clustering"

- Soln: reduce weight based on nearness to other measurements
 - Use squared exponential still, but in denominator

$$K_{xx} = \begin{bmatrix} e^{-(x_1 - x_1)^2/(2s^2)} & e^{-(x_1 - x_1)^2/(2s^2)} \\ e^{-(x_2 - x_1)^2/(2s^2)} & e^{-(x_1 - x_1)^2/(2s^2)} \\ \vdots \end{bmatrix}$$

• Each element is $(K_{xx})_{i,j} = w(x_i, x_j) <==$ both x's are measurements

GPR function estimates Estimate y

$$\hat{y}(x) = K_x^T K_{xx}^{-1} y$$

Estimate (ŷ) is a weighted average of the measurements (y)

GPR uncertainty Two types of uncertainty

- GPR reports uncertainty in its estimate, model uncertainty
- Contrast with SE of an aggregate measurement, measurement uncertainty
- Criteria:
 - Uncertainty is zero (minimum) at x_i , where you have a measured value
 - Uncertainty is one (maximum) far from any measurements

GPR uncertainty Uncertainty criteria

GPR uncertainty Model uncertainty

- Think "certainty" for a moment, "certainty = 1-uncertainty":
 - 1 at measurement, x_i
 - 0 far from measurements
- What has this form? Squared exponential, K_{γ}
- Interpolate between certainties the same as we interpolated between measurements: $K_{r}^{T}K_{rr}^{-1}K_{rr}$
- Switch back to uncertainty: $1 K_x^T K_{yy}^{-1} K_y$

Full GPR

•
$$\hat{y}(x) = K_x^T K_{xx}^{-1} y$$

$$\hat{\sigma}_y^2 = 1 - K_x^T K_{xx}^{-1} K_x$$

- N.B.: Matrix inversion is O(n^3), which is slow
- This was an intuitive "reading" of the GPR equations. For a more precise presentation, see Appendix C.

What puts the G in GPR? And how is it a "process"?

- Model each value y(x) as a gaussian distribution
- Model any collection of $\{y(x)\}$ as a multivariate gaussian distribution
 - x is continuous, so really an infinite-dimension gaussian distribution
- First considered as *y*(*t*), where *t* is time. A process is something that changes over time. A gaussian process is one where y has a gaussian distribution that changes over time. Ex: a Brownian motion (continuous random walk)
- Change t to x and you have a machine learning tool, GP regression

Summary Gaussian process regression (GPR)

- GPR is *nonparametric*, forms estimates directly from measurements
- GPR reports estimates of BM and of model uncertainty in BM
- Used as surrogate function in Bayesian optimization
- Computation is kind of slow, $O(n^3)$

 $\hat{y}(x) = K_x^T K_{xx}^{-1} y$

 $\hat{\sigma}_y^2 = 1 - K_x^T K_{xx}^{-1} K_x$