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Review
Surrogate function in Bayesian optimization

• A surrogate function models the response surface, BM(parameters)


• BO uses Gaussian process regression (GPR) to create the model


• BO optimizes over surrogate:


• Finds parameter value that maximizes the GPR estimate of BM



Gaussian process regression
Overview

• Estimates both function value (BM) and model uncertainty


• uncertainty in its own estimate of BM


• NOT uncertainty in your measurement, that’s S.E.


• Forms estimates at parameter values where you haven’t taken measurements


• Forms estimates directly from measurements; no fitting


• So we call GPR nonparametric



GPR function estimates
Baseline

• BM aggregate measurements so far: 


• Call parameter values , so  is BM measured at parameter 


• Goal: Estimate  for any , call it 


• Start somewhere: Estimate everywhere by the average





• Not very precise, but unbiased. Good place to start for any model.
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Standardize

• Subtract out mean and focus on deviations from it





• While we’re at it, divide by stddev:





• Transformed  have no units ($, clicks, minutes, etc.) and 
new  has mean 0 and stddev 1.
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GPR function estimates



• Now  for all .


• N.B.: Recover original units by:


̂y(x) = 0 x

σy ̂y(x) + ȳ

GPR function estimates
Standardize



Weighted average

• Model variation with 


• From average (which is now just 0)





• to weighted average


x

̂y(x) =
Σyi

n

̂y(x) =
Σwiyi

Σwi

GPR function estimates



• Key: weights depend on distance from  to 


•  - parameter at which we’re forming an estimate


•  - parameter where we’ve already measured


• So:





• N.B.:  are fixed numbers, the measurements of BM
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GPR function estimates
Weighted average



• Criteria:


•  should be larger when  nearer to  b/c we assume the response 
surface, , varies reasonably smoothly


•  should approach 0 when farther away from 


• (when far from all ,  will approach zero, the baseline value)


•  called a kernel function
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GPR function estimates
Weighted average: functional form of w



• We’ll use squared exponential: 


• nice and smooth, so we get smooth interpolations between measurements


• a universal kernel, i.e., can be used in GPR to model any smooth function


• N.B.: not calling it “gaussian kernel” in this context b/c confusing (i.e., it’s 
not this kernel that puts the “G” in GPR)


•  is a hyperparameter; determines scale of smoothness


• tune  by LOOCV or other out-of-sample method

w(x, xi) = e−(x−xi)2/(2s2)
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GPR function estimates
Weighted average: functional form of w






• or, with  and 





• a compact, matrix-vector form

̂y(x) = Σw(x, xi)yi(xi) ∝ Σe−(x−xi)2/(2s2)yi(xi)

K = [w(x, x1), w(x, x2), …]T y = [y1, y2, …]T

̂y(x) ∝ KTy

GPR function estimates
Weighted average: functional form of w



“Clustering”
GPR function estimates

Double weight

b/c two measurements

Too high



• Soln: reduce weight based on nearness to other measurements


• Use squared exponential still, but in denominator





• Each element is   <== both x’s are measurements

Kxx =
e−(x1−x1)2/(2s2) e−(x1−x2)2/(2s2) e−(x1−x3)2/(2s2) …
e−(x2−x1)2/(2s2) e−(x2−x2)2/(2s2) e−(x2−x3)2/(2s2) …

⋮ ⋮ ⋮ ⋱

(Kxx)i,j = w(xi, xj)

GPR function estimates
“Clustering”



Estimate y




• Estimate ( ) is a 
weighted average of the 
measurements ( )

̂y(x) = KT
x K−1

xx y

̂y

y

GPR function estimates



GPR uncertainty
Two types of uncertainty

• GPR reports uncertainty in its estimate, model uncertainty


• Contrast with SE of an aggregate measurement, measurement uncertainty


• Criteria:


• Uncertainty is zero (minimum) at , where you have a measured value


• Uncertainty is one (maximum) far from any measurements

xi



GPR uncertainty
Uncertainty criteria

Minimum, zero

Maximum, one



Model uncertainty

• Think “certainty” for a moment, “certainty = 1-uncertainty”:


• 1 at measurement, 


• 0 far from measurements


• What has this form? Squared exponential, 


• Interpolate between certainties the same as we interpolated between 
measurements: 


• Switch back to uncertainty: 
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KT
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1 − KT
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GPR uncertainty



Full GPR

•  
 




• N.B.: Matrix inversion 
is O(n^3), which is slow


• This was an intuitive “reading” of 
the GPR equations. For a more 
precise presentation, see 
Appendix C.
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What puts the G in GPR?
And how is it a “process”?

• Model each value  as a gaussian distribution


• Model any collection of  as a multivariate gaussian distribution


• x is continuous, so really an infinite-dimension gaussian distribution


• First considered as , where  is time. A process is something that changes 
over time. A gaussian process is one where y has a gaussian distribution that 
changes over time. Ex: a Brownian motion (continuous random walk)


• Change  to  and you have a machine learning tool, GP regression

y(x)

{y(x)}

y(t) t

t x



Summary
Gaussian process regression (GPR)

• GPR is nonparametric, forms estimates directly from measurements


• GPR reports estimates of BM and of model uncertainty in BM


• Used as surrogate function in Bayesian optimization


• Computation is kind of slow, 
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